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Stability of coherent states 

G D’Arianots, M Rasetti$§ and M Vadacchinot 
t Dipartimento di Fisica ‘A Volta’, UniversitB di Pavia, Italy 
$ Dipartimento di Fisica, Politecnico di Torino, Italy 

Received 30 October 1984 

Abstract. We give an algebraic characterisation of the dynamical systems which preserve 
the coherence of a generalised coherent state defined for a Lie group. The breaking of 
coherence is related to singularities appearing in the S matrix. We show a regularisation 
procedure to eliminate such singularities based on the jet realisation of the diff eomorphism 
group induced by contact transformations on the state manifold. 

1. Introduction 

The usual coherent states were introduced as states of a physical system sharply 
localised in position and momentum around the classical values (Glauber 1963, 1966). 
They could therefore be thought of as the quantum states more closely related to the 
classical ones. For these coherent states (customarily referred to as Glauber’s coherent 
states) there is an additional interesting feature connected with their dynamics. Under 
the action of a harmonic oscillator Hamiltonian they evolve preserving their shape in 
time, namely remaining coherent (Metha er a1 1967, Kumar and Metha 1980). 

Different methods of generating coherent states have been devised in the literature 
over recent years, most of them seeking a generalisation capable of extending the 
above properties to cases of more direct physical significance (Nieto and Simmons 
1979a, b, c, Nieto 1980, Gutschick and Nieto 1980, Nieto er a1 1981). 

The most promising among such generalisations is the construction of the coherent 
states connected to a group (Rasetti 1973, 1975, Perelomov 1972). 

The concept of coherent states for an arbitrary Lie group G is based on several 
ingredients. First the existence of a fixed cyclic vector I w )  in the Hilbert space 2 is 
required-whose translates under the group action, T ( g ) ( w ) ,  g E G are just the coherent 
states. 

One notices that in the case when G is compact and semi-simple i w )  certainly 
exists, and is such that-upon denoting by g‘ = gOig the complexification of the Lie 
algebra of G, whose Cartan decomposition writes 

-it is nothing other than the vector I W ) E  2 satisfying 

T ( A ) l w ) =  e*(A)lw) A E h  

§Also GNSM of the CNR 
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X ( W )  = 0 X E  c 9a 
a € A +  

where h is the Cartan subgroup of G and for any X E g 

eA(exp(X))  = exp(A(X)) 

A E ig* denoting the highest weight. 
On the other hand the homogeneous space G/h  is acted on by G by means of 

holomorphic transformations, whereby the coherent state representatives can be 
thought of as holomorphic sections of an homogeneous line bundle. One can check 
that, if G is simple, G /  h is a simply connected Hodge manifold (Hurt 1968) and if, 
moreover, the maximal root A is non-degenerate there is a unique fundamental field 
which can be realised in terms of a G-invariant form on G /  h. 

Thus the manifold G/h  can be viewed in that case as just the (classical) phase 
space on which G acts through canonical transformations. 

All of this suggests that there should be, in general, a dynamical system naturally 
associated with the manifold of coherent states. In terms of it the evolution of such 
states should keep the state representative point in the orbit of G. There arises the 
concept of coherence preserving action. 

The aim of the present paper is to investigate the global features of such an action. 
The language of modern algebraic geometry should be the most appropriate tool for 
addressing the question in its full formal generality. We prefer however to tackle here 
the problem in a more physically intuitive-although, of course, rigorous-way, leaving 
a more formal approach to a later paper. 

In  $ 2 the concept of stability is introduced, using as a reference the coherent states 
for the Weyl group, which are indeed just the coherent states of Glauber. In 0 3 the 
problem of coherence breaking is taken into consideration and a general technique to 
avoid the singularities it leads to is described. The latter is based on the jet realisation 
of the diffeomorphism group induced by contact Backlund transformations on the 
state manifold. Moreover in $ 4  a toy model is thoroughly analysed in which the latter 
technique gives interesting results. Section 5 concludes with a few remarks on the 
possible role of Morse functions in the framework discussed above. 

2. Stability of coherent states 

The question of constructing the most general Hamiltonian for which a system- 
prepared so as to be in a coherent state at the initial time t,-will remain coherent for 
all times, has been the object of several discussions (Glauber 1963, 1966, Metha et a1 
1967, Kumar and Metha 1980). Such discussions, however, have always been restricted 
to the usual Glauber coherent states, 

ZA E A = 1,2,. . . , N 

10,) denoting the N-particle vacuum state. 
In that case the system consists of a set of N quantum harmonic oscillators, 

described in terms of creation and annihilation operators U:, U, ; [U, ,  u t ]  = SA, ; 
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A, g = 1,. . . , N. The most general coherent-state-preserving Hamiltonian reads: 

N M 
~ ( t ) =  C w,,(t)a:a,+ ( ~ A ( i f ) a A + F h ( t ) a : ) + p ( t )  (2.2) 

A , ,  = I h = l  

- 
where GAP = w p h  and /3 = p. 

Indeed, upon writing the solution of the equation of motion in the form 

I$( t i )  = U ( t ,  to)lcL(to)) U+ = U-’ (2.3) 

(2.4) 

we have 

U( t, to) = P[ exp( -; 1,; H (  t ’ )  dit ) ]  

where P is the time ordering operator. On the other hand, the time evolution operator 
U( t ,  to) has a simple representation as a functional integral (path integral over the 
coherent state manifold C 1: 

where the kernel U is defined by 

with 

S,[z, Z ] =  dt’(z(t’)lihd/dt’- H( r ’ ) ( z ( r ’ ) )  1,: 
= J”,:df.[:i4(ii-h)-W(z, 2 ) ]  (2.7) 

where f z ’ =  Xt.=, fAz; : the fixed end-point conditions z (  to) = 5, 9( t )  = are imposed 
and W( z, 2 )  is the diagonal matrix element of the Hamiltonian in the coherent state basis: 

(2.8) 

Upon inserting (2.2) into (2.5)-(2.8) one obtains the explicit form of the representation 

W( 2, 5) = ( 2 (  t’)I H( t ‘ ) i  z (  1 ‘ ) ) .  

N 

i Im %z0+ [ ( z , , ,  - z,,,)a: - ( F A , ,  - %,o)aAl )  (2.9) 
h = l  

given by Kumar and Metha (1980). 
Little or no attention at all, on the contrary, has been devoted to the same problem 

in the case of generalised coherent states for an arbitrary Lie group G (Rasetti 1973, 
1975, Perelomov 1972). The latter are defined according to the following scheme. Let 
8~ G and denote by T ( g )  an irreducible unitary representation of g on a suitable 
Hilbert space E. Let also h be the stability subgroup of some vector I O ) E  2 and 
M = G/  h the corresponding factor space. The coherent states ix) for G, labelled by 
X E  M ,  are constructed as 

lx) = exP(- i4d)l4$J (2.10) 

(2.1 1) 
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Notice that the existence of a fixed cyclic vector I w )  E 2t is guaranteed if G is either 
a non-compact connected, real semi-simple Lie group with finite centre, or it is solvable. 
In the latter case h coincides with the maximal compact subgroup K entering the 
Iwasawa decomposition of G :  

G = K A N  (2.12) 

where A is the Abelian compact subgroup of G and N its maximal nilpotent subgroup. 
If G is compact, I w )  can be chosen to be the highest weight vector of the irreducible 

representation T ( 8 ) .  Extending T ( g )  to a holomorphic representation of the com- 
plexification G, of G in 2, the stability subgroup of l w )  under T ( g )  becomes a parabolic 
subgroup P of G ,  (McDonald 1979). The algebra of P is p = bOEmEEg-, where b is 
the algebra of the Bore1 subgroup B of G, and E ={a E A + ( ( a ,  w )  = 0) is the set of 
positive roots orthogonal to the maximal weight. In this case the stability subgroup h 
of G is P n G ,  hence by Bott's theorem (Bott 1953), 

G / h = G , / B  (2.13) 

the coherent state representatives can be viewed as holomorphic sections of the 
homogeneous line bundle L,(G/ h, 52) associated with the principal fibre bundle P + 
Gc+ G J P  by the holomorphic character x:  

T(p) /w)=x(p) lw)  p E 9. (2.14) 

We will show that the most general Hamiltonian H preserving the states ~ X ) E  M is an 
element of the extension of the Lie algebra g of G by the algebra a = 5/g where 5 is 
the algebra associated with 9 = Aut( M ) ,  the group of automorphisms of M, i.e. 

 HE^. (2.15) 

If G is semi-simple, 5 coincides-up to identity automorphisms which could be realised 
only by an extension by a direct sum of ideals-with g; whereas if G is solvable, 5 

is the algebra in whose Levi decomposition the maximal solvable ideal is g, 

5 = a O g  (2.16) 

where the semi-simple Lie algebra a preserves Iw ) .  
The proof of the above statements is based on the following observations. In order 

to preserve the coherence of the initial state, due to definitions (2.3), (2.4) the time 
evolution operators U(t, to)  are required to be in one-to-one correspondence with the 
elements of Aut( M ) .  We realise Aut( M )  by the adjoint representation Ad( $9). If  G 
is semisimple (Helgason 1968) 

$9=GxD 

where D denotes a discrete subgroup, and 

Ad( $9) = 9. 

(2.17) 

(2.18) 

It follows that the Hamiltonian H is an element of 9, G is therefore a dynamical group. 
If G is solvable. 

Ix,)'U(t, to)lXg)=Ad(s)T(gS)lw) S E  $9 BEG (2.19) 

is a coherent state of G if both G and h are jnvariant subgroups of 9 and the algebra 
5 of 9 is decomposable according to (2.16). 
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Indeed in such a case h is certainly an invariant subgroup of 3, in that it is contained 
in the maximal invariant subgroup of 3, and G is an ideal of 3. 

It is instructive to think of the case of Glauber coherent states, synthesised in 
equations (2.1), (2.3), as a particular case of this general formulation. This is simply 
done by recognising in g the Weyl algebra 

in a the algebra gI(N, C) of the extension of the little group (stability subgroup of 
I w )  = IO,)) and 

3. Coherence breaking 

The discussion of § 2 leads in a natural way to enquiring how the picture is modified 
when H is perturbed by addition of a small term W( t), breaking the coherence. W (  t )  
as a function of t has a compact support. The problem is somewhat like the quantum 
analogue of studying the stability of KAM tori under non-integrable perturbations 
(Moser 1973). 

It appears from equation (2.15) that the addition to H of any element of 

where k is a finite integer greater than or equal to 2, and e ( p )  denotes the enveloping 
algebra of order p of g, shall, in general, violate the property of preserving the coherent 
states of G. 

The new Hamiltonian H +  W is now an element of an infinite dimensional Lie 
algebra I, the universal-enveloping algebra of g. On the other hand it was shown by 
D'Ariano and Rasetti (1985a) that the coherent states for the infinite dimensional Lie 
algebra gI(c0) coincide with the T functions, namely the set of all (polynomial) solutions 
to the hierarchies of equations encountered in soliton theory, and the evolution of 
such coherent states can be thought of as a succession of infinitesimal Backland contact 
transformations. 

The latter have been thoroughly investigated, in particular in view of defining global 
criteria of integrability. The most promising approach, based on Cartan's theory of 
exterior differential systems is the prolongation method of Wahlquist and Estabrook 
(1973,1975). 

When the infinite dimensional Lie algebra of Wahlquist and Estabrook is replaced 
by a finite dimensional one, the prolongation process coincides with the construction 
of a connection whose curvature vanishes on solutions of the prolonged equation. The 
natural framework of theory becomes then that of jet bundles. 

A system of nonlinear partial differential equations of order s is defined to be the 
submanifold 3 of a s-jet bundle J'"', equal to the zero set of a finitely generated ideal 
of functions on J ' ' )  itself. The pull-back map from J'') to R defines the contact module 
Cl"' (Pirani et a1 1977). If t > s then a'" is a submodule of a('). 
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If the integrability conditions of a map 

9 3 : f S )  x [w -+ J"' (3.1) 

comprise a system of differential equations on J's+l 'xR, then W is a Backland map. 
Prolongations W(') are maps of higher jet bundles and systems 3") induced from W 
and 3 (which in coordinates amount merely to taking total derivatives). If there is 
an integer t such that the image of 93(')l9('' is a system 3' of differential equations 
on J ( l + l )  , then the Backland transformation is nothing but the correspondence between 
3 and 9'. Backland maps are then the natural generalisation of contact transforma- 
tions. They may be thought of as (local) diffeomorphisms of J"' satisfying W * f l ( ' '  = fl"' 
( W *  is the map, induced by W, of forms and functions-whereas W is a map of 
manifolds). 

The functions on J '"  can be endowed in a natural way with the infinite Lie algebra 
structure by considering the vector field Y on J ( ' )  defined by 

for a given contact form 6 and any 1-form W ;  where J denotes the interior product 
of a vector field and a form. 

If w = df; where f is a function on J" ' ,  then-writing V j  for the field "Ir-the Lie 
bracket is 

f o g = [ f ; g l =  "Irjg. (3.3) 

93 is in this case an automorphism of the Lie algebra structure characterised by (3.3). 
The obvious generalisation of such a scheme is to (local) diffeomorphisms of 1'"' 

which preserve fl"'. By a suitable choice of the basis one can identify the functions 
on J"' with the components of the cross sections of the tangent bundle T ( X )  to a 
differentiable manifold X. I which is isomorphic with the gauge current algebra d 
generated over X by the structure (3.3)-it can be thought of as a submodule of 
differential operators over the algebra F ( X )  of C" functions on X with compact 
support. On the other hand equations (3.2) imply that Vj  is tangent to the fibres of a 
maximal rank map 7;: E -+ X, where E is the manifold over which the 1-form 6 is 
defined. 

Let 8 be the space of all maps G, and consider the maps a :  Yt-+ T(3l ) .  6 induces 
on 8 a contact 1-form 6, which can be written in the functional form 

where d v (  p ) ,  p E X is a suitable measure over X. In such scheme, d has generators 

where y (  p )  is bilinear in the elements of the Weyl chamber of the Abelian component 
in the Iwasawa decomposition of g, realised as a module of differential operators over 
X, such that 
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The map induced by 6, F ( X )  + F ( E )  enables one to identify F ( X )  with a subring 9?o 
of F ( E ) .  Define 9l to be the subspace of functions f E F ( E )  such that W ; = O .  One 
has [9?o,%o]=0,  [9?l,9?o]c9?o, [%l,9?,]c91. The Lie subalgebra F"'=9?o+9?l of 
F (  E )  has then a representation by first-order differential operators on X (Hermann 
1970). 

One can then further define a filtration {I("'} of I by the grading on F ( E )  given 
recursively by 9" = 9?19?n-l, n 2 I .  The filtered algebra F'"' associated to the latter is 
F'" '=  %!o+. . .+%!,,, and one has [F '" ' ,  F ' " ' ] c  F("+"-" , whence 

(3.6) 

Notice that the set of elements UOsnsq 1'") for a fixed q, in general does not form a 
subalgebra of 1. It does only if q = 1. On the other hand, however, 

[ I ! n ) ,  I ( m ) l C  I ( n + m - l )  

(3.7) 

is a subalgebra of I. In particular, for q 2 I ,  I?, is an invariant subalgebra of 21, One 
can therefore form the factor 

V q 3 l  (3 .8)  

2, is an algebra. We shall denote by {T,'\}?=l the infinitesimal generators of the 
stabiliser subgroup Y of 9 (2' denoting the group obtained by exponentation of I),  
leaving the point P E  X fixed. Upon denoting by A,, A , - ,  the poly-indices A ,  = 

2 = o  12 
q & I  , + I  

- 

{I1 , . . . ,  I , } ,  i , - s = { T s +  I , . . . ,  T,} ,  t 3 s + l ;  

(3.9) [y;", yXf-"]= & i x y y -  am,l,yp'. 

w h e r e ~ , = A , u ~ , - , ,  with n s l ,  t > n + l ,  n + l s s s t ,  I s r s n .  The{F:s}?=, form 
a representation of ZT Let 2'"' be the subset of all 9:. for given n > 0. Due to the 
commutation relations (3.9) we have a grading relations similar to (3.6) 

n>O (3.10) 

Now, however, 2'" is empty, and it is possible to set, consistently, 2 ' " ' = 0  for all n 
larger than some fixed integer z. 

[ x ( n ) ,  ~ ( m 1 l c  T ( n + m - l )  

The representation 

(3.1 I )  

is the so-called jet representation of order z of I. In this representation H +  W still 
preserves a set of coherent states. The latter, however, are not the coherent states of 
G, but of the group 6, obtained by exponentiation of XT In general only a set of 
measure zero of the orbit of 6, belongs to the orbit of G. 
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4. Application to a simple solvable model 

We now show the structure outlined in the previous section for a simple solvable 
example, once more related to the case when G is the Weyl group. Consider the choice 

w(f)= 8(f-7,)Wn 
n =  I 

Y N 

= E  C A.S( t -7 , )  c ( a A + a : ) * ( a , + a ~ ) *  (4.1) 
n = l  A +  = 1 

where 0 s R ,  s 1 are anisotropy factors, E the characteristic coupling energy, { 7,) an 
arbitrary ordered sequence of times in the interval t o -  t l  and H is given by (2.2). 

We intend to compute 

As we discussed before, the unperturbed Hamiltonian H preserves coherence and one 
expects to have to deal essentially with the effect of W. This is more effectively done 
in terms of the intermediate Dirac representation instead of the Schrodinger representa- 
tion implicitly adopted so far. Indeed the transformation from the latter representation 
to the former is an element of G, and all the relevant information is therefore contained 
in 

where 

(4.4) 

Now, due to the form of (4.1), 

n 
where n, denotes the ordered product over the discrete sequence (7,) and 

(4.6) 

One has therefore 

where Izo) = 17); Iz,)= 18). Since H( t )  preserves the coherence, 

(4.8) 
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for some & ; c k ;  k = 0,. . . , v - 1. The integrand in (4.7) is thus a product of v factors 
of the form (we define gk = & + ] / h ,  and hence drop the index k for the sake of 
simplicity of notation): 

The typical factor (4.9) can be computed explicitly by first expanding 

(4.9) 

(4.10) 

where {vA} are all possible collections of N non-negative integers. By the Wilcox 
formula (Wilcox 1967), whereby 

where the generalised binomial coefficient { a;b} reads 

if a - b = 2k 

if a - b is odd 

(4.1 1) 

(4.12) 

and upon setting wA = (& + one gets in a straightforward manner 

where E ( p ) ( x )  = Z ; = , x k /  k !  is the truncated exponential function. Upon representing 
now the inner sum in (4.13) constrained by the Kronecker delta as 

with 
02 

@ k ) (  z )  = C y  v)z" 
" = O  

one finally obtains 

where the coefficients c ( ~ ) ( v )  are defined by 

( 2 v ) !  
C ( k )  ( V ) = - - W ; E ( Y )  (IW ' i l ) .  

U !  

(4.14) 

(4.15) 

(4.16) 

(4.17) 
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The S matrix S ,  as given by (4.16), is non-analytic at least in the ground state. Indeed 
f o r 6 = 5 * = 0 , i . e . w A = O ; h = 1  , . . . ,  N,(4.13)reads 

Using once more the formula (4.14) which holds now with 

9 ( z ) = ( I  -2z)-”2 (4.19) 

as well as the normalisation ( ONI 0,) = 1, equation (4.18) becomes 

(-ig)” ( N  +4n - 2 ) ! !  
( O N I § / O N ) =  1 - 

“-0 n !  (N-2)!! 

= exp[(32ig)-’]U(+( N - l ) ,  (8ig)-”2) (4.20) 

where U ( a ,  x )  is the Weber parabolic cylinder function regular at infinity (g+O). 
Equation (4.20) shows that the S matrix is not analytic for g = 0, i.e. the radius of 
convergence of the power series in g in (4.20) itself is zero. The above results implies 
that as one performs the integration in (4.7), at those values of zk and zk+l such that 
the ket 

coincides with 

and both are equal to I ON), there the orbit describing the time evolution of the system, 
in the presence of a perturbation E (possibly infinitesimal) does not coincide with the 
unperturbed orbit even in the limit E + 0. This is the breaking of coherence. The point 
along the trajectory where this happens is a branch point which corresponds to a 
possible bifurcation of the process. The manifold M in its neighbourhood is to be 
replaced by the universal covering manifold. The latter has locally the structure of a 
Riemann surface, and the continuation of the orbit implies a choice about the sheet 
along which the process takes place. In other words one should equip the propagator 
with a rule about how to go around the singularity induced by the branching when E 

is vanishingly small. This is most naturally done by following the procedure discussed 
at the beginning of the present section, i.e. expressing the propagator, which is not an 
element of I, in the jet representation of some finite order z of I. One can easily check 
that for the example discussed in (4.11) to (4.20), such a procedure is simply realised 
with z = 1 and q = 1, by the following scheme. We introduce first the generalised 
k-boson operators (Rasetti 1972, Katriel 1979) 

(4.21) 

where 

l + [ s / k j  ”* 
( k ) =  -( ) exp(i8,) 

Q J  s = o ( ~ -  . s ! ( s + k ) !  
(4.22) 
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as well as their conjugate Bik'+, A = 1 , . . . , N, ([xn denotes integer part of x; 6, are 
arbitrary phases). We restrict here our attention to the two-boson operators BA := Bi2) ,  
B:. Such operators annihilate and create respectively two bosons of type a,, in the 
sense that 

(4.23) 

where N, = aLa,. The BA and their conjugates, as given by (4.21), are manifestly 
elements of Q2 (see (3.7)). Thus, due to definition (3.8), they form the algebra S,. 
The latter is isomorphic with the original Weyl algebra, as (4.23) show. 

A jet representation of order 1 of I matches the operators of g, thought of as 
differential operators, up to the second order; and one can regularise H + W by simply 
replacing (U, + a : ) 2  in (4.9) with ( B A  + B:), A = 1 , .  . . , N. The new S operator thus 
obtained reads: 

(4.24) 

In general the coherent states connected with the algebra (4.23) are obviously in 
one-to-one correspondence with those given in (2.1) and can be constructed out of 
the same fixed vector 10,) in the Hilbert space. Therefore all we need to check is that 
(O,lgjO,) as a function of g has a finite radius of convergence. 

by 
( B A  + B:) and noticing that the Wilcox formula can once more be used due to (4.23), 
we get instead of (4.20) 

Repeating the procedure utilised in (4.10)-(4.13), upon replacing ( a A  + 

= ( 1  +igN)-1'2 (4.25) 

which is clearly analytic in g for g + 0. 
In conclusion we notice that the procedure of regularisation of the S matrix 

discussed before suggests the possibility of generalising the squeeze operators whereby 
the squeezed coherent states are generated. It was shown by Fisher et al (1984) that 
the customary squeeze operators 

are unbounded in the Hilbert space of the simple harmonic oscillator for k > 2 .  On 
the contrary, operators of the form 

clearly do not suffer similar pathologies and their spectrum is both measurable and 
bounded (D'Ariano er a1 1985b). 
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5. Conclusions 

In 0 3 of this paper we characterised dynamical systems in algebraic terms, identifying 
which algebraic structure the corresponding Hamiltonians should have in order that 
a system-prepared so as to be in a state described by a generalised coherent state for 
a given group G at time zero-during its time evolution under such a Hamiltonian, 
would pass through a continuous sequence of states, each described by a generalised 
coherent state. 

In § 4, moreover, we showed how, when a coherence breaking term is added to 
the previous Hamiltonian, singularities appear in the propagator. A regularisation 
procedure could, however, be devised, whereby such singularities are removed. Essen- 
tially this amounts to matching locally the group of diffeomorphisms of the jet bundle 
describing the local evolution of the system over the coherent state manifold (by 
Backland contact transformations), with the jet realisation of a group included in 2 
(the exponentiation of the enveloping algebra of the Lie algebra of G). 

In such a case coherence is expected to be preserved for states corresponding to 
a different group G’ than the original one (even though we were able to exhibit, in an 
example thoroughly discussed in § 4 itself, a case in which the new group is indeed 
isomorphic with G). In general, the conservation of coherence in this latter case holds 
only for a finite neighbourhood of each point of the new coherent state manifold M ’ ,  
and the latter turns out to be split into the union of a set of non-overlapping stability 
domains (whose boundaries are the coherence breaking submanifolds). 

If a symplectic Kahler structure can be constructed over M ‘  (which should be 
always the case, if M ‘  is to be interpreted as a classical phase space), globally extendable 
over the whole manifold, then the latter is a homogeneous Kahler variety (and the 
corresponding stability subgroup h’ is the centraliser of the maximal toral subgroup 
of G’). The resulting coherent state manifold has then a homology without torsion, 
with vanishing odd Betti numbers. 

On the other hand Betti numbers can be found in a straightforward manner from 
the diagram of G’ utilising Morse theory (Bott 1958). 

We conjecture that the resulting Borel-Morse cells (Borel 1954) analytic subvarieties 
whereby the space M ’  is decomposed in such a procedure, indeed coincide with just 
the structural stability basins for coherent states (labelled in M ’ )  defined before; and 
that the corresponding Morse functions themselves can be written in terms of gen- 
eralised coherent state representatives. Work is in progress along these lines. 
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